PLIN2 is a Key Regulator of the Unfolded Protein Response and Endoplasmic Reticulum Stress Resolution in Pancreatic β Cells
نویسندگان
چکیده
Progressive pancreatic β cell failure underlies the transition of impaired glucose tolerance to overt diabetes; endoplasmic reticulum (ER) stress expedites β cell failure in this situation. ER stress can be elicited by lipotoxicity and an increased demand for insulin in diabetes. We previously reported that the lipid droplet protein perilipin 2 (PLIN2) modulates lipid homeostasis in the liver. Here, we show that PLIN2 modulates the unfolded protein response (UPR) and ER stress in pancreatic β cells. PLIN2 expression goes up when β cells are exposed to a lipid load or to chemical ER stress inducers. Downregulation of PLIN2 ameliorates the effects of fatty acid- and chemical-induced ER stress, whereas PLIN2 overexpression exacerbates them. Diabetic Akita mice, which carry a heterozygous C96Y Ins2 mutation, exhibit elevated PLIN2 expression and ER stress in their β cells. Genetic ablation of Plin2 in Akita mice leads to mitigation of ER stress, forestalling β cell apoptosis, partially restoring β cell mass, and ameliorating diabetes. Mechanistic experiments showed that PLIN2 downregulation is associated with enhanced autophagic flux and accelerated ER stress resolution. In sum, we have identified a crucial role for PLIN2 in modulating autophagy, ER stress resolution, and β cell apoptosis and survival.
منابع مشابه
Role of Oxidative Stress in Modulating Unfolded Protein Response Activity in Chronic Myeloid Leukemia Cell Line
Background: Recently, it has been revealed that tyrosine kinase inhibitors (TKIs) act through inducing both oxidative and endoplasmic reticulum (ER) stress in chronic myeloid leukemia cells. However, ER stress signaling triggers both apoptotic and survival processes within cells. Nevertheless, mechanisms by which TKIs avoid the pro-survival effects are not clear. The aim of this study was to ev...
متن کاملEndoplasmic reticulum stress and eIF2α phosphorylation: The Achilles heel of pancreatic β cells
BACKGROUND Pancreatic β cell dysfunction and death are central in the pathogenesis of most if not all forms of diabetes. Understanding the molecular mechanisms underlying β cell failure is important to develop β cell protective approaches. SCOPE OF REVIEW Here we review the role of endoplasmic reticulum stress and dysregulated endoplasmic reticulum stress signaling in β cell failure in monoge...
متن کاملInsulin demand regulates β cell number via the unfolded protein response.
Although stem cell populations mediate regeneration of rapid turnover tissues, such as skin, blood, and gut, a stem cell reservoir has not been identified for some slower turnover tissues, such as the pancreatic islet. Despite lacking identifiable stem cells, murine pancreatic β cell number expands in response to an increase in insulin demand. Lineage tracing shows that new β cells are generate...
متن کاملPancreatic cancer-associated diabetes is an "exosomopathy".
Diabetes may be a consequence of pancreatic cancer, preceding cancer diagnosis. The underlying mechanism is the release of exosomes delivering adrenomedullin to β cells, inducing endoplasmic reticulum stress and perturbations in the unfolded protein response, leading to β-cell dysfunction and death. This knowledge could lead to improved diagnostic strategies for pancreatic cancer.
متن کاملAn update on lipotoxic endoplasmic reticulum stress in pancreatic β-cells
The UPR (unfolded protein response) or ER (endoplasmic reticulum) stress response was first described 20 years ago. The field of ER stress has expanded tremendously since, moving from basic biology in yeast to human neurodegenerative, inflammatory, cardiovascular and neoplastic diseases. The ER stress response has also been implicated in diabetes development, affecting both insulin production b...
متن کامل